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Recently, Steinberg used discrete Morse theory to give a 
new proof of a theorem of Symonds that the orbit space 
of the poset of nontrivial p-subgroups of a finite group 
is contractible. We extend Steinberg’s argument in two 
ways, covering more general versions of the theorem that 
were already known. In particular, following a strategy of 
Libman, we give a discrete Morse theoretic argument for the 
contractibility of the orbit space of a saturated fusion system.
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1. Introduction

Let G be a finite group and define Sp(G) to be the poset (under inclusion) of all non
trivial p-subgroups of G. The group G acts naturally on Sp(G) by conjugation. The order 
complex |Sp(G)| has simplices the chains of inclusions in Sp(G) and retains the action 
of G via conjugation since conjugation is inclusion preserving. This complex was first 
studied by Brown in [3] and [4]. That the quotient space |Sp(G)|/G is contractible was 
first proven by Symonds [14] and an alternative proof was given later by Grodal in [7].
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Theorem 1.1 ([14]). Let G be a finite group and let C be a non-empty collection of non
trivial p-subgroups of G that is closed under G-conjugacy and passage to overgroups that 
are p-groups. Then N(C)/G is contractible.

Linckelmann and Libman proved an extension of Theorem 1.1 valid for a saturated 
fusion system F on a finite p-group S. In that context, C is a closed F-collection, a 
collection of subgroups of S that is closed under F-conjugacy and passage to overgroups 
in S (see Definition 4.4), and N(C)/F is the quotient of the nerve N(C) of the poset by 
the equivalence relation given by F-conjugacy of chains.

Theorem 1.2 ([9] and [8]). Let F be a saturated fusion system over the finite p-group S
and let C be a closed F-collection. Then the space N(C)/F is contractible.

Recently, Steinberg [13] proved that |Sp(G)|/G is contractible for any finite group G
using discrete Morse theory. This result is slightly weaker than Theorem 1.1 (it handles 
the case C = Sp(G)), but it gives a geometric reasoning for the contractibility of the 
space |Sp(G)|/G. The goal of this paper is to extend Steinberg’s argument to general 
collections C and to saturated fusion systems.

To prove Theorem 1.2 using discrete Morse theory, we extend Theorem 1.1 to the case 
of a pseudo finite group G (Definition 3.1) by constructing a Morse matching with a single 
critical cell for N(C)/G. Our argument differs from Steinberg’s in that we do not pass to 
normal chains of p-subgroups. This allows us to extend to arbitrary collections, recovering 
Theorem 1.1 in the original generality, and also to finish the proof of Theorem 1.2
following a strategy of Libman.

1.1. Notation and terminology

We fix the following notation and terminology. When G is a group, P ≤ G, and g ∈ G, 
we write P g = g−1Pg. We also write the G-conjugacy class of P as follows:

PG = {Q ≤ G | there is g ∈ G such that P g = Q}

When g ∈ G, we write cg for the right-handed conjugation homomorphism x �→ g−1xg

and its restrictions. We write

HomG(P,Q) = {cg | g ∈ G, P g ≤ Q}.

Given a prime p, we denote by Sylp(G) the set of all Sylow p-subgroups of G (when such 
exist; see Section 3).
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2. Discrete Morse theory

The general idea of discrete Morse theory is that we would like to strip away all non
essential data from a simplicial set and only keep a record of the nondegenerate simplices 
which, if removed, would alter the homotopy type.

Definition 2.1. Let X be a simplicial set. Suppose given

(1) a partition of the nondegenerate simplices (or cells) into critical cells, redundant 
cells, and collapsible cells.

(2) a bijection c from the set of redundant cells to the set of collapsible cells such that, 
for each redundant n-cell τ , c(τ) is an (n + 1)-cell and τ is a face of c(τ), and

(3) a choice of index ι(τ) ∈ {0, 1, . . . , n+ 1} such that τ = dι(τ)(c(τ)), where di denotes 
the i-th face map.

We say that these data are a Morse matching (or collapsing scheme in [5]) for X if 
the following condition is satisfied: if D is the digraph whose vertex set consists of the 
redundant and collapsible cells and whose edges are of the form τ → c(τ) for τ redundant, 
and σ → dj(σ), where j �= ι(c−1(σ)), for σ collapsible, then there is no infinite directed 
path in D.

Note that we ignore degenerate simplices since we are interested in the geomet
ric realization of X, in which they are identified with lower dimensional simplices. In 
Definition 2.1, critical cells are the ones that alter the homotopy type if removed. By 
Theorem 2.2 below, called the fundamental theorem of discrete Morse theory, they are 
the only cells that matter with respect to homotopy. Redundant and collapsible cells 
come in pairs because of the bijection c, and are the ones that will collapse without 
altering the homotopy type.

Theorem 2.2 ([5], [6]). Let X be a simplicial set. Given a Morse matching for X, there 
is a CW-complex Y and a quotient map q : |X| → Y of CW-complexes such that

(1) for each n, the n-cells of Y are in bijection with the critical n-cells in X (with 
characteristic maps the compositions of q with the characteristic maps to |X|), and

(2) q is a homotopy equivalence.

Our goal is to apply Theorem 2.2 by constructing a Morse matching on a closed 
collection of finite p-subgroups of a pseudo finite group at the prime p.

3. Contractibility in pseudo finite groups

Let G be a (possibly infinite) group. A finite p-subgroup S of G is a Sylow p-subgroup 
of G if every finite p-subgroup of G is conjugate to a subgroup of S. By Sylow’s Theorem, 
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this is equivalent to the usual definition of Sylow p-subgroup in case G is finite. If G is 
a group and γ = (P0 ≤ P1 ≤ · · · ≤ Pn) is a chain of subgroups, the normalizer of γ in G
is the intersection

NG(γ) =
n ⋂

i=0
NG(Pi)

of the normalizers of the members of the chain. The following definition is due to Libman 
[8, Definition 3.7].

Definition 3.1. A group G is pseudo finite at p if for every chain γ of finite p-subgroups 
of G, the normalizer NG(γ) has a Sylow p-subgroup.

Here, we allow the trivial subgroup to appear in the chain γ. In particular, a pseudo 
finite group has a Sylow p-subgroup. The following is the main theorem of the paper. 
It generalizes Steinberg in two ways; the Morse matching is applicable to pseudo finite 
groups G at the prime p and to arbitrary closed sub-collections of Sp(G).

Theorem 3.2. Let G be a pseudo finite group at the prime p and C ⊆ Sp(G) be a collection 
of non-trivial p-subgroups of G that is closed under conjugation and passage to overgroups 
that are p-groups. The simplicial set N(C)/G admits a Morse matching in which the set 
of critical cells consists of a single cell of dimension 0. Hence, N(C)/G is contractible.

Note that the group G has an order-preserving action via conjugation on C. This 
action extends to a simplicial action on N(C).

Given an n-simplex γ = (P0, . . . , Pn) in N(C), we write

[γ] = [P0, . . . , Pn]

for the orbit of γ under this action. We will prove Theorem 3.2 in three steps. First, 
we define the collections of redundant, collapsible, and critical cells and show that they 
partition the nondegenerate cells of N(C)/G. Second, we define the maps c and ι. Lastly, 
we show that there are no infinite directed paths in the associated digraph.

3.1. The partition

Recall that we need to partition the nondegenerate cells of N(C)/G into critical cells, 
redundant cells, and collapsible cells. Let Γ(C) ⊆ N(C) be the set of nondegenerate 
simplices γ = (P0, . . . , Pn). By convention, P−1 = 1 is the trivial subgroup.

We say that γ is redundant if for any Q ∈ Sylp(NG(γ)) and any 0 ≤ i ≤ n, we have 
Pi �= QPi−1. If γ is not redundant, we say γ is collapsible if n ≥ 1 and critical if n = 0.

Now let red(C), col(C), and crit(C) be the collections of redundant, collapsible, and 
critical cells, respectively. By construction, these sets form a partition of Γ(C), and they 
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are invariant under conjugation because NG(γ)g = NG(γg) for any element g ∈ G. This 
partition gives us a partition on Γ(C)/G consisting of red(C)/G, col(C)/G, and crit(C)/G.

The next lemma shows that there is only one critical cell and it is precisely the orbit 
of the Sylow p-subgroups of G.

Lemma 3.3. If [γ] is a nondegenerate cell, then [γ] is a critical cell if and only if [γ] = [S]
where S ∈ Sylp(G).

Proof. Assume that [γ] = [S]. Since S = S · 1 and S ∈ Sylp(NG(S)), it is critical.
Conversely, suppose that [γ] is a critical cell. There is some P0 such that [γ] = [P0]

and P0 ∈ Sylp(NG(P0)). In particular, P0 ∈ Sylp(NS(P0)). Therefore, there is some 
g ∈ NS(P0) ≤ G such that P g

0 = S. This gives us that [γ] = [P0] = [S]. �
3.2. The maps c and ι

Let τ = (P0, . . . , Pn) be any redundant cell. We define ι([τ ]) = i + 1 where 0 ≤ i ≤ n

is maximal such that Q ≰ Pi for each Q ∈ Sylp(NG(τ)).
We now define c : red(C)/G → col(C)/G by, for each τ ∈ red(C), fixing Q ∈

Sylp(NG(τ)) and setting c([τ ]) = cQ([τ ]), where

cQ([τ ]) =
{

[P0, . . . , Pι([τ ])−1, QPι([τ ])−1, Pι([τ ]), . . . , Pn] if 1 ≤ ι([τ ]) ≤ n

[P0, . . . , Pn, QPn] if ι([τ ]) = n + 1.

We need to show that c is a well-defined bijection between redundant and collapsible 
cells in Γ(C)/G. In the proof, we will write cQ(τ) for the representative of the orbit 
cQ([τ ]).
c and ι are independent of the choice of Sylow subgroup: Let τ = (P0, P1, . . . , Pn) ∈
red(C) and suppose Q,R ∈ Sylp(NG(τ)). There exists g ∈ NG(τ) such that Qg = R. 
Notice that for all 0 ≤ j ≤ n, P g

j = Pj , and since conjugation is inclusion preserving, 
there is a unique i such that Q,R �≤ Pi and Q,R ≤ Pi+1 unless i = n. We then have 
Pi < QPi < Pi+1 or Pn < QPn and

cQ(τ)g = (P0, P1, . . . , QPi, . . . , Pn)g

= (P g
0 , P

g
1 , . . . , (QPi)g, . . . , P g

n)

= (P0, P1, . . . , Q
gP g

i , . . . , Pn)

= (P0, P1, . . . , RPi, . . . , Pn)

= cR(τ),

for example. That is, [cQ(τ)] = [cR(τ)] and ι([cQ(τ)]) = i + 1 = ι([cR(τ)]).
c and ι are well-defined. Let [τ ], [τ ′] ∈ red(C)/G be such that [τ ] = [τ ′]. That is, there 
is some g ∈ G such that τg = τ ′. This gives us that NG(τ)g = NG(τ ′), and Q is a 
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Sylow p-subgroup of NG(τ) if and only if Qg is a Sylow p-subgroup of NG(τ ′). Since 
conjugation is inclusion preserving, it follows from the independence of the choice of 
Sylow p-subgroup that c([τ ]) = [cQ(τ)] = [cQg (τ ′)] = c([τ ′]).
c([τ ]) is the orbit of a nondegenerate simplex. Note that since P0 is a normal p-subgroup 
of NG(τ) and Q is a Sylow p-subgroup, P0 ≤ Q. By definition of redundant cells, this must 
be a proper inclusion. That is, Q ≰ P0, so ι([τ ]) �= 0. Also note that QPι([τ ])−1 < Pι([τ ])
is a proper inclusion, since [τ ] is redundant.
c maps redundant to collapsible. Next, we show that c([τ ]) is collapsible. Notice that if 
Q is a Sylow p-subgroup of NG(τ), then Q ≤ NG(cQ(τ)) ≤ NG(τ), so Q must also be a 
Sylow p-subgroup of NG(cQ(τ)). Since Pι([τ ])−1 and QPι([t])−1 are consecutive members 
of the chain cQ(τ), this gives us c([τ ]) = [cQ(τ)] is collapsible.
c is injective. Let [τ ] = [P0, . . . , Pn] and [τ ′] = [P ′

0, . . . , P
′
n] such that c([τ ]) = c([τ ′]). Let 

Q ∈ Sylp(NG(τ)) and Q′ ∈ Sylp(NG(τ ′)). We have the following:

c([τ ]) = [P0, . . . , Pι([τ ])−1, QPι([τ ])−1, Pι([τ ]), . . . , Pn] = [σ]

c([τ ′]) = [P ′
0, . . . , P

′
ι([τ ′])−1, Q

′P ′
ι([τ ′])−1, P

′
ι([τ ′]), . . . , P

′
n] = [σ′]

Since c([τ ]) = c([τ ′]), there is some g ∈ G such that σg = σ′. Also, since Q ∈ Sylp(NG(σ)), 
we have that Qg ∈ Sylp(NG(σ′)). Hence, there is some h ∈ NG(τ ′) such that Qgh = Q′. 
Therefore, by the definition of ι([τ ]), we have that ι([τ ]) is the unique maximal index 
such that Q �≤ Pι([τ ])−1, and thus

Qg �≤ P g
ι([τ ])−1 Conjugation preserves ordering

Qgh �≤ P g
ι([τ ])−1 Conjugation by h does not affect P g

ι([τ ])−1

Q′ �≤ P ′
ι([τ ])−1

By the maximality of ι([τ ′]), ι([τ ]) ≤ ι([τ ′]). Using a symmetric argument, we obtain 
that ι([τ ′]) ≤ ι([τ ]) giving the equality ι([τ ]) = ι([τ ′]). Therefore, [τ ] = dι([τ ])(c([τ ])) =
dι([τ ′])(c([τ ′])) = [τ ′].
c is surjective. Let [σ] = [R0, . . . , Rn+1] be a collapsible (n + 1)-cell, which means that 
QRi−1 = Ri for some 1 ≤ i ≤ n + 1, where Q ∈ Sylp(NG(σ)). Suppose towards a 
contradiction that Q / ∈ Sylp(NG(τ)) where [τ ] = di([σ]). We can choose R ∈ Sylp(NG(τ))
such that Q < R. Since R is a finite p-group, it follows that

Q < NR(Q)

≤ R ∩NG(Q)

≤ NG(τ) ∩NG(Q)

≤ NG(σ)
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This is a contradiction as NR(Q) ≤ R and Q is a Sylow p-subgroup of NG(σ). Therefore, 
Q is indeed a Sylow p-subgroup of NG(τ), and we get that c([τ ]) = [σ]. This shows that 
c is surjective.

3.3. No infinite directed paths

Let D be the associated digraph whose vertex set consists of the union of red(C)/G
and col(C)/G and whose edges are of the form [τ ] → c([τ ]) for [τ ] ∈ red(C)/G, and 
[σ] → dj([σ]), where j �= ι(c−1([σ])), for [σ] ∈ col(C)/G.

Define for any γ ∈ N(C)

h([γ]) = logp |Q|

where Q ∈ Sylp(NG(γ)). We say that h([γ]) is the height of γ. If two n-cells are equal in 
N(C)/G, then they are conjugate and their Sylow p-subgroups are conjugate. Hence, h
is well defined. The function h is also bounded above by logp |S|.

We need to show that there is no infinite directed path in D. The following proposition 
explains how the height of cells changes over edges in D.

Proposition 3.4. Suppose that there is an edge in D from [σ] to [γ]. If [σ] is collapsible 
and [γ] is redundant, then h([γ]) > h([σ]). Otherwise, h([γ]) = h([σ]).

Proof. Let [σ] be a collapsible n-cell and Q ∈ Sylp(NG(σ)). By definition of D, if there 
is an edge from [σ] to [γ], then [γ] = dj([σ]) for some j �= ι(c−1([σ])). As Q normalizes 
σ, it normalizes dj(σ). Since Q is a finite p-group, we can choose R ∈ Sylp(NG(dj(σ)))
such that R ≥ Q. This gives us that h(dj([σ])) ≥ h([σ]).

Notice that by our choice of R, h(dj([σ])) = h([σ]) if and only if Q = R. It follows from 
the definition of collapsible cells that equality holds if and only if dj([σ]) is collapsible. 
This finishes the proof of the proposition for edges that begin at a collapsible cell.

Now suppose that [σ] is a redundant cell. By definition of D, we have that [γ] = [cQ(σ)]
for a fixed Q ∈ Sylp(NG(σ)). Since Q is also a Sylow subgroup of NG(cQ(σ))), it follows 
that h([γ]) = h([σ]). �

We now show that there is no infinite directed paths in D.

Proof. Fix a directed path in D. By definition of D, there is no edge connecting two 
redundant cells. That is, each edge in the path goes from a collapsible cell to a redundant 
cell, a collapsible cell to a collapsible cell, or a redundant cell to a collapsible cell.

Since the height of any cell in the path is bounded above by h([S]) where S ∈ Sylp(G), 
there are only finitely many edges in the path going from a collapsible cell to a redundant 
cell by Proposition 3.4.

Over each edge in the path going from a collapsible cell to a collapsible cell the 
dimension of the cell decreases. Since dimension is bounded, there are finitely many edges 
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in a string of collapsible cells before the path reaches a redundant cell (or terminates). 
Since there are only finitely many edges going from a collapsible cell to a redundant cell 
by above, there are only finitely many edges in the path going from a collapsible cell to 
a collapsible cell.

Finally, each edge from a redundant cell to a collapsible cell is immediately preceded 
by an edge from a collapsible to the redundant (or the redundant cell started the path) 
and we have seen there are only finitely many of these. Hence, there are a finitely many 
of edges going from a redundant to a collapsible.

Therefore, the path is finite. �
This finishes the proof that the given data define a Morse matching for N(C)/G with a 
single critical cell. Theorem 2.2 implies that N(C)/G is contractible and completes the 
proof of Theorem 3.2. Note that Theorem 3.2 implies Theorem 1.1 as all finite groups 
are pseudo finite at a given prime p that divides |G|.

4. Application to saturated fusion systems

When G is a group (not necessarily finite) and S is a finite p-subgroup of G, we can 
form the fusion system, denoted FS(G), as follows:

• The objects of FS(G) are the subgroups of S.
• Given any two subgroups P,Q ≤ S, HomF (P,Q) = HomG(P,Q).

Broto, Levi, and Oliver defined fusion systems in [2], in part based on some earlier ideas 
of Puig. Modified but equivalent definitions of abstract fusion systems can be found in 
[1].

Definition 4.1 ([11], [1]). A fusion system over a finite p-group S is a category F such 
that

• The objects of F are the subgroups of S.
• Given any two objects P,Q ≤ S, the morphism set is such that HomS(P,Q) ⊆

HomF (P,Q) ⊆ Inj(P,Q), where Inj(P,Q) is the set of all injective group homomor
phisms from P to Q.

• Each ϕ ∈ HomF (P,Q) is the composite of an isomorphism in F followed by an 
inclusion.

We say that P and Q are F-conjugate if they are isomorphic as objects in F . Write PF

to denote the collection of all subgroups of S that are F-conjugate to P .

A fusion system F is said to be saturated if it satisfies further axiom(s) as detailed 
in Definition 2.2 in [1]. When G is a finite group and P ∈ Sylp(G), then FP (G) is a 
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saturated fusion system. However, a fusion system of the form FP (G) is usually not 
saturated if P / ∈ Sylp(G).

A saturated fusion system F is said to be realizable by the (possibly infinite) group G if 
there is some S ∈ Sylp(G) such that F = FS(G). There are examples of saturated fusion 
systems that are not realized by any finite group in this way. However, the following 
realizability result was shown independently by Robinson and by Leary and Stancu.

Theorem 4.2 ([12, Theorem 2], [10, Theorem 2]). Let F be a saturated fusion system 
over a finite p-group S. There is some (possibly infinite) group G and S ∈ Sylp(G) such 
that F = FS(G).

In his paper, Libman was able to show that if a (possibly infinite) group G realizes a 
saturated fusion system F over the finite p-group S, then G is pseudo finite at the prime 
p. We state his results below.

Proposition 4.3 ([8], Proposition 3.9). A group which realizes a saturated fusion system 
is pseudo finite at the prime p.

For the remainder of this paper, fix a saturated fusion system F on a fixed finite p
group S. By Theorem 4.2, we can fix a group G such that F = FS(G) and S ∈ Sylp(G), 
and using Proposition 4.3, we know that G is a pseudo finite group at the prime p.

Definition 4.4 ([8], Definition 1.2). Fix a fusion system F of S. An F-collection is a union 
of F-conjugacy classes of subgroups of S. An F-collection C is closed if a subgroup Q ≤ S

belongs to C whenever it contains an element of C.

We now let C be any nonempty closed F-collection. It is clear that C is a poset under 
inclusion. We again denote the nerve of C as N(C). On N(C), define an equivalence 
relation ∼F as follows: Given two n-simplices, we have

(P0, P1, . . . , Pn) ∼F (Q0, Q1, . . . , Qn)

if and only if there is some isomorphism ϕ ∈ HomF (Pn, Qn) such that ϕ(Pi) = Qi for 
every i ∈ {0, 1, 2, . . . , n}. We will denote the quotient N(C)/∼F as N(C)/F .

Define

Ĉ =
⋃
P∈C

PG

where PG denotes the G-conjugacy class of P . By construction, the nerve N(Ĉ) is closed 
under G-conjugation, so we can form the quotient N(Ĉ)/G. Using the following result 
from Libman, we have that N(C)/F is isomorphic to N(Ĉ)/G as simplicial sets.
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Proposition 4.5 ([8], Proposition 3.10). Let G be a group that realizes the saturated fusion 
system F on the finite p-group S. Let C be an F-collection. Then N(C)/F → N(Ĉ)/G
is an isomorphism of simplicial sets.

With the work in Section 3, we can prove Theorem 1.2 using discrete Morse theory:

Theorem 4.6. Let F be a saturated fusion system over the finite p-group S and let C be a 
closed F-collection. The simplicial set N(C)/F admits a Morse matching where the set 
of critical cells consists of one cell of dimension 0, and hence N(C)/F is contractible.

Proof. By Theorem 4.2 and Proposition 4.3, F = FS(G) for some pseudo finite group G
at the prime p and S ∈ Sylp(G). By Proposition 4.5, we know that N(C)/F is isomorphic 

to N(Ĉ)/G as simplicial sets. By Theorem 3.2, we know that N(Ĉ)/G admits a Morse 
matching with in which the set of critical cells consists of one cell of dimension 0. Applying 
Theorem 2.2, N(C)/F is contractible. �
Acknowledgments

We would like to express our gratitude to our advisor, Justin Lynd, for his guid
ance and support throughout the writing of this paper. His dedication to our work, 
keen insights, and meticulous review were instrumental in shaping the content of this 
manuscript. This paper would not have been possible without his mentorship. We would 
like to extend our appreciation to Philip Hackney for his insight on the topological as
pects of this paper. We are grateful for his time, insightful comments, and dedication to 
ensuring the integrity of our mathematical reasoning. We also want to thank Jesper Gro
dal and Benjamin Steinberg for reaching out after making our work public with insights 
and recommendations on a previous version of this paper. We finally want to thank the 
referee for pointing out a mistake in the construction of the Morse matching and taking 
the time to write a detailed report on the previous version of this paper.

Data availability

No data was used for the research described in the article.

References

[1] Michael Aschbacher, Radha Kessar, Bob Oliver, Fusion Systems in Algebra and Topology, vol. 391, 
Cambridge University Press, 2011.

[2] Carles Broto, Ran Levi, Bob Oliver, The homotopy theory of fusion systems, J. Am. Math. Soc. 
16 (4) (2003) 779--856.

[3] Kenneth S. Brown, Euler characteristics of discrete groups and G-spaces, Invent. Math. 27 (3) (1974) 
229--264.

[4] Kenneth S. Brown, High dimensional cohomology of discrete groups, Proc. Natl. Acad. Sci. 73 (6) 
(1976) 1795--1797.

http://refhub.elsevier.com/S0021-8693(25)00211-X/bib79D18848D6C09832F216FB00BF6B82BDs1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bib79D18848D6C09832F216FB00BF6B82BDs1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bibCEB93C2D33E3CC11E2D5E3BF0401C3EAs1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bibCEB93C2D33E3CC11E2D5E3BF0401C3EAs1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bib3710D2CB94D9C7283624626097F73697s1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bib3710D2CB94D9C7283624626097F73697s1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bib4CCE9AA5E082550D61269F1638B19847s1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bib4CCE9AA5E082550D61269F1638B19847s1


O. Dennaoui, J. Villareal / Journal of Algebra 677 (2025) 267--277 277

[5] Kenneth S. Brown, The geometry of rewriting systems: a proof of the Anick–Groves--Squier theorem, 
in: Algorithms and Classification in Combinatorial Group Theory, 1992, pp. 137--163.

[6] Robin Forman, Morse theory for cell complexes, Adv. Math. 134 (1) (1998) 90--145.
[7] Jesper Grodal, Endotrivial modules for finite groups via homotopy theory, J. Am. Math. Soc. 36 (1) 

(2023) 177--250, https://doi.org/10.1090/jams/994, issn: 0894-0347, 1088-6834.
[8] Assaf Libman, Webb’s conjecture for fusion systems, Isr. J. Math. 167 (1) (2008) 141--154.
[9] Markus Linckelmann, The orbit space of a fusion system is contractible, Proc. Lond. Math. Soc. 

98 (1) (2009) 191--216.
[10] Ian Leary, Radu Stancu, Realising fusion systems, Algebra Number Theory 1 (1) (2007) 17--34.
[11] Lluis Puig, Frobenius categories, J. Algebra 303 (1) (2006) 309--357.
[12] Geoffrey R. Robinson, Amalgams, blocks, weights, fusion systems and finite simple groups, J. Al

gebra 314 (2) (2007) 912--923.
[13] Benjamin Steinberg, Contractibility of the orbit space of the p-subgroup complex via Brown–Forman 

discrete Morse theory, arXiv preprint, arXiv:2303.07882, 2023.
[14] Peter Symonds, The orbit space of the p-subgroup complex is contractible, Comment. Math. Helv. 

73 (3) (1998) 400--405.

http://refhub.elsevier.com/S0021-8693(25)00211-X/bibFEB80A4C4118729A6534CEC1EFC78B54s1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bibFEB80A4C4118729A6534CEC1EFC78B54s1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bibC842E4D485BE7F46B1C6768C1C46C586s1
https://doi.org/10.1090/jams/994
http://refhub.elsevier.com/S0021-8693(25)00211-X/bib78FD82E54EBFF53257A9CB377D81F621s1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bib63C197FF6D57F2CD6300005F55882E4Cs1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bib63C197FF6D57F2CD6300005F55882E4Cs1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bibA627F337A53AD7A70FCC82A2021DD769s1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bibF1BDFE1620EA4E885ED9FEA4F6222A5As1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bibE5A5EF2EFBD12E93EBEE1AEF6D18DE5Bs1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bibE5A5EF2EFBD12E93EBEE1AEF6D18DE5Bs1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bib53C3C6954A204AE8054294572D9F272Cs1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bib53C3C6954A204AE8054294572D9F272Cs1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bib24E7CAC13E9F65DC8A7DC52E3211C814s1
http://refhub.elsevier.com/S0021-8693(25)00211-X/bib24E7CAC13E9F65DC8A7DC52E3211C814s1

	Contractibility of the orbit space of a saturated fusion system after Steinberg
	1 Introduction
	1.1 Notation and terminology

	2 Discrete Morse theory
	3 Contractibility in pseudo finite groups
	3.1 The partition
	3.2 The maps c and ι
	3.3 No infinite directed paths

	4 Application to saturated fusion systems
	Acknowledgments
	Data availability
	References


